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A free-energy model for mixtures of charged particles interacting through the Yukawa repulsive po-
tential is derived analytically from the Onsager-type exact lower bound for the free energy of the system.
It takes the form of a “nonlinear mixing rule,” which relates the configurational free energy of the mix-
ture to that of the one-component Yukawa system. This scaling law holds, under broad assumptions, for
the exact Madelung (i.e., asymptotic strong-coupling) energy term for the fluid; within the hypernetted-
chain approximation, it is very accurate also for conditions of intermediate and weak coupling. The
physics relating this mixing rule with the well-known volume-additivity rule for the Thomas-Fermi mix-

ing of elements is revealed.

PACS number(s): 64.70.Dv, 64.10.+h, 05.70.Fh

I. INTRODUCTION

Many quite disparate systems with screened Coulomb
interactions can be described by Yukawa interparticle po-
tentials which thus make important reference systems in
condensed-matter physics [1]. Systems with repulsive Yu-
kawa potentials [2—4] provide models for, e.g., dense stel-
lar materials [5)], inertially confined plasmas [5], and
“mesoscopic plasmas” of charge-stabilized colloidal sus-
pensions such as latex spheres in water [6—8]. They are
useful to test general ideas about phase transitions [9] be-
cause the shape of the potential varies continuously with
the screening length. Screened binary ionic mixtures
[2-5] have an immediate application to astrophysical
problems involving phase separation of elements [10,11]
and to inertial-confinement experiments in plasma phys-
ics, which require [12-14] very accurate equations of
state. The accurate free energy of the mixture is also re-
quired, through the zero-separation theorem, for calcu-
lating enhancement factors for nuclear reaction rates
[15,16], and in liquid-state theory [17].

An accurate scaling law, which relates the
configurational free energy of the mixture to that of the
one-component system, is important because of its phys-
ics content and because it facilitates the representation of
a large body of data for mixtures of, e.g., different
charges and compositions, in a concise form. A widely
used approximation of plasma mixtures is the empirical
“linear mixing rule” [12,13]. It states that, e.g., the ener-
gy of the plasma mixture at constant temperature T and
charge density p’ can be expressed, to a high degree of ac-
curacy, as a linear interpolation between the energies of
the respective pure phases. The linear rule for un-
screened [14] and moderately screened [2] binary ionic
mixtures, is based on the “ion-sphere” model, which pro-
vides an Onsager-type [18] exact lower bound for the po-
tential energy of the mixture, as first proven by Lieb and
Narnhofer [19]. The linear mixing rule was first verified
by extensive hypernetted-chain calculations, which pro-
vide a very useful tool for developing such theories
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[5,12,13], and only later was it validated by the heavy
simulations [5] which were required. The main purpose
of the present paper is to apply this methodology (as first
taken for the Coulomb potential) to the Yukawa poten-
tial: The first step requires the generalization to the Yu-
kawa potential, of the Lieb-Narnhofer procedure for ob-
taining the Onsager-type bound. The second step is the
verification of the implied “rule” by the hypernetted-
chain approximation. It is hoped that the results of these
two analytical and semianalytical treatments, respective-
ly, will motivate the heavy simulations required to test
these approximations.

The observation of a special renormalization property
of the Yukawa potential (Sec. II) makes it possible to
evaluate analytically the Onsager-type exact lower bound
for the energy of the general mixture with Yukawa repul-
sive interactions (Sec. III). The exact energy lower bound
induces a ‘“nonlinear mixing rule” for strongly coupled
systems. The present nonlinear mixing rule reduces to
the linear rule for weak screening, yet it is valid even for
very strong screening conditions (Sec. IV). Pending the
very heavy simulations needed for testing the new “non-
linear mixing rule,” a numerical solution of the
hypernetted-chain equations for a large variety of binary
Yukawa mixtures supports its validity even for inter-
mediate and weak coupling (Sec. IV). The physics relat-
ing this nonlinear rule with the Thomas-Fermi equation
of state for mixtures of elements is revealed (Sec. V).
The relevance of these results for calculations of thermo-
dynamic properties and phase behavior of the fluid mix-
ture is pointed out (Sec. VI).

II. CHARGE RENORMALIZATION
FOR THE YUKAWA POTENTIAL

The Yukawa intermolecular potential, ¢ y(r)=e % /r,
has the special property that it gives rise to the same
functional form for the potential outside a spherically
symmetric distribution of matter.

Consider the bipolar-coordinate result for the convolu-
tion of two spherically symmetric functions:
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F(r)= [ plu)p(lr—ul)du

2677

the potential outside the charge distribution:

© x+r R r+x
=(@m/n) [ "plx)x dx f{xﬂqu(y)y dy . (1) o(rzR)=2n/n [ poxdx [T yydy @
For a confined charge distribution, p(x = R)=0, and po- which for the Yukawa potential, ¢(y)=dy(y)
tential function ¢(y), obtain the following expression for = exp(—ay)/y, takes the form
J
®(r>R)=[ exp(—ar)/r] (Zv/a)foRp(x)x[exp(ax)— exp(—ax)]dx] , (3)
M

ie., ing through the Yukawa pair potentials:
®(r=zR)=[1/q(a,R)][ exp(—ar)/r], (4) ¢;(r)/kgT=2Z,Z;Te */r . 9)
where Hereafter distances are measured in units of the total
_ R ) Wigner-Seitz radius, a =(3/4mn)'"3, n=N/V
[1/9(a,R)]= [(477/0‘)_[0 p(x)x sinh(ax)dx | . (5)  =(3$,N,/V) is the total number density, and T is the

Thus, if a point Yukawa charge Z is smeared out radi-
ally up to a finite radius R, and if at the same time the
charge is appropriately renormalized, Z ..., =¢ (a,R)Z,
then the potential outside the smearing radius R remains
the same as for the original point charge.

For a uniform distribution inside a sphere of radius
R,p(r <R)=3/47R3, 1 obtain

q(a,R)yiform=Q(aR) =1, (6a)
Q()=(2t3/3)/[e(t —1)+e Wt +1)]
=1—1¢2/10+9:t*/1400+ - - - . (6b)

The Gauss-Newton theorem for the Coulomb potential
(a=0) is manifestly satisfied by Q (0)=1. Consider two
“renormalized” charges Z;Q(aR;) and Z;Q(aR;) uni-
formly smeared inside spheres of radii R; and R}, respec-
tively, separated by a distance, #, and interacting via the
Yukawa potential. The interaction between these two
distributions, ¢;;(r), has the familiar convolution-type
Fourier transform,

¥, (k)=Z,0(a,R,)Z;Q (aR;)p(kR,)p(kR )¢y (k) ,  (T)

where  ¢y(k)=4mw/(k®’+a?) and  p(k)=3[sin(k)
—k cos(k)]/k3. Because of the renormalization proper-
ty, however, it obeys

V;(N=2Z,Z;¢y(r)=Z,Zje"*/r, for rZR;+tR;, (8a)
and it can be separately checked that
V(1 <Z,Z;¢y(r), for r <R;+R; . (8b)

The renormalization property now enables us to follow
the Onsager ‘“smearing” procedure as developed for ob-
taining a lower bound for the potential energy of
Coulomb systems [18-20], and apply it to general Yu-
kawa systems. Here I apply it to systems of point parti-
cles interacting through Yukawa repulsive potentials.

III. EXACT “ONSAGER-TYPE” LOWER BOUND
FOR THE POTENTIAL ENERGY

(a) Consider classical mixtures consisting of N; posi-
tively charged, Z;e >0, point particles of type i, interact-

coupling constant (e.g., [ =e?/akyT is the conventional
plasma coupling parameter). The inverse screening
length a can be density and temperature dependent. The
interaction potential energy of the mixture (per particle,
in temperature units) is given in general by the standard
energy integral involving the pair (radial) distribution
functions, g;;(r),

u=U/NkyT=(n/2)3 x;x; [ 8Py /kzTld’r ,
i’j
(10a)

where x; =N, /N are the number concentrations. For the
Yukawa potential this takes the special form

u=03r/2)3 xx;Z,Z;G;(a) ,
i’j

(10b)

where Gij(a)=frg,~j(r)e"a’dr is the Laplace transform
of [rgij(r)]'

The Onsager smearing method [18-20] for the Yu-
kawa potential now proceeds similarly to that for the
Coulomb potential. Consider any physically allowed
configuration of the point particles and denote its total
potential energy by Up. The energy is measured relative
to the self-energy of the point charges. Consider a sys-
tem, the “smeared system,” with an identical
configuration of the particles, but in which the point
charges are smeared out within finite radii R;, and the
smeared charges are renormalized such that their poten-
tial outside the smearing radii remains identical to that of
the original point charges. The total smeared charge in-
side a sphere of radius R; is Z;q; where each renormal-
ized charge g; depends on R; and on the smearing form.
The total smeared charge density is pg=n 3, x;Z;q;,
n =N /V is the total number density. With the Wigner-
Seitz radius, a, which is our unit of length, n =3 /4, and
our energy unit is e2/a. To neutralize the “smeared” sys-
tem we immerse it in a uniform background Yukawa-
charge of density p, = —pg. The neutralized “‘smeared”
system thus consists of the smeared charges interacting
via pair interaction W (r), and the uniform background
charge density. The total potential energy of the neutral-
ized “smeared” system, Ug, is positive definite Ug=0
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since it is the total energy of a nonsingular Yukawa
charge distribution of total charge density p(r). Let ®(r)
be the corresponding potential at the point r in the
“smeared” system, then

=1 [pmo(nav, (11)

which in view of the differential relation
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Since the surface integral is negligible in the thermo-
dynamic limit, we find that Ug is a manifestly positive
definite:

_1 20 22
Us=- [f [[VO(r)[2+a2®Xr))dV |>0.  (15)
Having defined the system composed of smeared

charges and their neutralizing uniform background, con-
sider now the ‘“Ewald identity,”

V2o —al®=—4mp (12)
Up=(Up—Ug)+Us . (16a)
and Green’s identity ) o . )
Using Ug 2 0 in this identity obtain the lower bound,
[[oV0+Ve-VoldV = [ ®Ve-dS (13)
Up=(Up—Ug), (16b)
takes the f
akes the form which is given by the following contributions:
_ 1 24 242 — .
Us=- [f[|v<1>(r)| +a2®¥r)|dV — [ Ve ds] . (Up—Ug) =85 +B , (160)
(14)  where
J
dp s =[(interaction between the point charges in U)— (interaction between the smeared charges in Ug)] (16d)
and
B = —[(interaction between the smeared charges and the background in Ug)
+(self-energy of the smeared charges in Ug)+ (self-energy of the background in Ug)] . (16e)

If we consider only smeared-charge distributions, p;(r),
for which [e.g., (8b)] the pair interaction between the
point charges is greater or equal to that between the
smeared charges, Z,Z;¢(r) =V, (r), then 8p 3 >0. The
self-energy of the smeared charges is given by
(N/2)3,; x;¥,;(r =0). The self-energy of the back-
ground is (1)V(ps)(ps)dy(k =0). The interaction be-
tween the smeared charges and the background is
—V(ps)ps)py(k =0)=—V(pg)*(4w/a?). Using these
expressions, a lower bound to the potential energy U is
given by B in the form

UZBZ—%Zx,-\I’,-,-(r=O)

+— [zqu,]2¢y(k=0). 17

By virtue of the Lieb-Narnhofer [19] result, the best such

bound is obtained for the uniform smearing inside a ra-

dius R;, for which the total volume of the smeared parti-

cles is equal to the volume of the system, i.e., their total

packing fraction is equal to unity, n= 3, x;R?=1. Fora

uniform smearing obtain g; =Q(aR;) as given by (6), and
r)=1,;(r) as given by (7) and (8), for which

n;(k =0)=3Z;Q(aR;)Z;Q(aR;)/a? 18)
and
Y (r =0):(Z’2/Ri)[Q(aRi)“(1+aRi)e_aRi]
X3Q(aR;)/(aR;)* . (19)

Inserting (19) result into (17) and maximizing the bound
B with respect to the radii R;, subject to the constraint
3, x;R?=1, obtain the following optimized Onsager-
Yukawa-type lower bound (denote u oy =B /NkyT):

uOY/F:zx,-u,- , (20)

expressed as the sum of “self” (dependent only on each
type i) terms:

=(Z2/R;)uy(aR;) 21
with the function u () related to Q (¢) of (6b),
uo()=(2)Q ()t +1)e "' /t? (22)

and where the smearing radii, R; [in Eq. (21)], are ob-
tained from the solution of the following set of nonlinear
coupled algebraic equations:

R}=Z,0(aR;)/ 3 x,Z;Q(aR;), i=12,.... (23)
1

These results for the Yukawa mixture provide the first
part in our program for generalizing the linear mixing
rule to the Yukawa potential. They also provide concrete
examples for general predictions [21] about the relation
of the Onsager bound and the asymptotic strong-coupling
limit of liquid-state theories [22].

(b) The excess (over ideal-gas) energy of the plasma as
evaluated in the standard linear-response approximation
of the electrons screening effects is related [3,17] to our
energy expression, u, by using [g;;(r)—1] instead of g;;(r)
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in (10), and by subtracting the value of
(1/2kgT){Z*)e?limr —0[1/r —$(r)]. Averages are
defined hereafter by

(Zm™)y=3,x.Z". (24)

The linear-response excess energy of the plasma is thus
defined as
ix; [ gy(r)

T){(Z%*)e?lim,_ [1/r —¢(r)] .
(25a)

u 1][¢,;(r)/kp T)d3r

mix, lin.resp. ~

—(1/2kB

For Thomas-Fermi screening the effective potential is the
Yukawa function, ¢(¥)=¢y(r), and the linear-response
excess energy of the plasma is

u zx XZIZ]GI_](a)

mix, lin, resp.

—3r<z>2/2a2—(r/z)<22>a (25b)
for which the Onsager bound (7) and (8) corresponds to
replacing u(¢) in (22) by

J

A

nonlin —

aaS T (SVARN AV A VAV A LS VASIIVALEAV AL
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U0 tin resp. (1) =uo(1)—3/(2t*)—1 /2
== (FE+ -

10

(25¢)

[see also Eq. (34) below]. It should be noted that the
functions Q(#) and u ji, resp, () are even functions of their
argument so that the Onsager bound for (25b) is an even
Sfunction of a. Thus, for small values of a the Onsager
bound predicts the following expansion for the linear-
response excess free energy:
F(F,a)/l‘=-—i—(~78—)a +0(a*) .

10

(26a)

It is interesting to note here that the best fits [23,24] to
simulation data yield

F(I,a)/T=—0.8992—(0.3261/m)a*+ - -+  (26b)

for large values of I, in excellent agreement with the
bound (26a). The weak screening expansion for the On-
sager bound for the mixture [Eqs. (20)—(23)] is given by

—0.9¢Z33)W(ZV3) + 4, i@’ +0(a?)
(27a)

U mix, lin. resp.

where the first term is the standard linear-mixing (ion-
sphere) result [12,13] for unscreened plasmas, and

=—(Z73) H{Z)VH{(E)H(Z)N1—LZ573)2/(Z277) /(Z)]

(27b)

This expansion is in agreement only with general trends along the coefficients in a fit [25] to simulation data which, as
they stand, cannot be compared in full detail with the present result. To obtain A4, we solve Egs. (23) to leading or-

der:
R, =(Z,/{Z '3} {1—(a*/30)[(Z;/{Z ))*3—(

IV. NONLINEAR MIXING RULE:
VERIFICATION WITHIN THE
HYPERNETTED-CHAIN APPROXIMATION

The second part of our program is to identify the mix-
ing rule as implied by the Onsager bound and to check it
within the hypernetted-chain approximation.

Considering again Egs. (20)—(23), define

I, =(Z?/R,)T, a;=aR;, (28)
with R; given by Egs. (23), and obtain
ExFuo Zx uoy (Tpa;), (29)

where ugy (I,a) is the Onsager bound for the one-
component Yukawa system with unit charges, Z, = 1.
Under broad assumptions the Onsager bound is the ex-
act leading term in the strong coupling expansion for the
fluid potential energy [21]. To the extent that its scaling
properties apply also for arbitrary values of the coupling
J

A =—KZ7) KZ) ) () +

5

(Z373)Y/(Z)*3/{Z))]+0

M Z33)2/(Z7 ) /(Z)

(a*)} . 27¢)

[

parameter, this strong-coupling limit suggests the follow-
ing general scaling approximation for repulsive-Yukawa
fluids:

zxu(f‘,,a s (30)

le

where u;, and u, refer to the mixture and to the one-
component energies, as given by (10) with the exact g;;(r),
and where Eqs. (23) are used in (28). This ‘“nonlinear
mixing rule,” Egs. (30), (28), and (23), is the main result
of this work. In accordance with how a depends on the
density and on the temperature, relation (30) can be in-
tegrated to yield the configurational free energy. The
limit «=0 of the nonlinear mixing rule corresponds to
the “linear mixing rule” [2,12-14] for unscreened plas-
mas. The limit a=0 of Egs. (23), R;=(Z,/{Z))'"?,
when employed in (28) and (30) with a:#O isa generahza-
tion of the ‘“linear mixing rule” to the Yukawa potential.
In the expansion for . iinresp. it cCOrresponds to a
different coefficient of the a? term, namely

)—((Z33)(Z)*3 /{2730y, 31)
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which is the expression for A4, .., but without the second
term. The comparison of 4., with 4, gives some in-
dication of the difference between the linear and non-
linear mixing rules as applied to electron-screened plas-
mas.

The nonlinear mixing rule, Egs. (30), (28), and (23),
should be verified eventually by simulations but, similarly
to the past experience with the linear rule, it is expected
that a good indication for its general validity can be ob-
tained within the hypernetted-chain approximation.
From such extensive calculations [26] for binary mixtures
I find that the nonlinear rule holds to an accuracy of
about 0.1% for a wide range of values for the physically
relevant parameters, namely, values of a =3, charge ra-
tios Z,/Z,=30, and effective coupling
1=T=(3,x;';)e"“<200. This high accuracy in-
creases with increasing I' .4, and is expected to hold for
even more extreme values of the charge ratio Z,/Z, and
screening parameter a. This parameter I' .y was chosen
such that at constant I' .z and a the mixtures have rough-
ly the same linear-response energy u piy jin resp.- 1h€ gen-
eralized linear mixing rule for Yukawa mixtures, i.e.,
R}=2Z,/{Z), is overall much less accurate than the full
solution of the nonlinear equations (23). The improve-
ment of the nonlinear rule over the linear mixing rule be-
comes more significant as a or I increase. For example,
taking Z,=32, Z,=1, x,=x,=0.5, a=2.5, [=1.479
then, within the hypernetted-chain approximation
U mix lin.resp. — — 89.894 vs —85.942 and —85.316 by the
nonlinear and linear rules, i.e., of 0.06% and 0.7% accu-
racy, respectively. The corresponding numbers of
x,=0.30, I'=2.872 are, respectively, —67.212,
—67.264, and — 65.986.

If this comparison between the linear and nonlinear
mixing rules is validated by simulations, such relatively
small variations in favor of the nonlinear rule should still
make [10,11] an important difference in phase-separation
calculations for these strongly coupled and strongly
screened Coulomb fluids. From the physics point of
view, however, the nonlinear mixing rule for screened
plasmas is a significant improvement (see below) over the
linear rule.

V. PHYSICAL MEANING OF
THE NONLINEAR MIXING RULE:
THOMAS-FERMI CONFINED-ATOM MODEL
FOR DENSE MATTER IN LINEAR RESPONSE

The Onsager exact energy bound for charged Yukawa
mixtures and the corresponding nonlinear mixing rule
have a simple physical meaning which is revealed by
treating the “Yukawa” problem in “Coulomb” language.
In the standard linear-response [2,3] treatment for point
ions in, e.g., a nearly degenerate Fermi sea of electrons, it
is assumed that the electron number density varies in
space according to (let e =1)

p)={p, ) +Ap (r)=n(Z)+(a?/4m)D(r) , (32)

where ®(r) is the electrostatic Coulomb potential at the
point r in space, and [27] « is related to the Fermi func-
tion I, ,,. Let Up be the total electrostatic potential ener-
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gy (relative to the infinite self-energy of the point charges)
of this electroneutral system, and let Uy be the nonideal
kinetic energy of the electrons in the linear-response lead-
ing order. Their sum,

UP+UK=éf[|V<I>(r)|2+a2d>2(r)]dV, (33a)
satisfies the following electrostatic inequality [28]:
UP+ UKZ ENinA,izUOTF 5 (33b)
where
uOA,«=~1-f[|V<I>(r)}2+a2<1>2(r)]dv,» ) (33¢)
’ 8w
The integral f -+ + dv; is over the volumes v; of individu-

al, confined, isolated, spherical, and neutral “Onsager-
atoms” (OA) composed of a central point charge Z; and
an electron cloud of number density (32) and radius R;.
To evaluate the Onsager-atom energy, up, ;, define

Y, (r)=rd;(r) (34a)
to obtain (recall e =1),
V! (r)—a*W;(r)=4mn{Z)r, for r<R,, (34b)
with the boundary conditions
(i) ¥Y;(r=0)=2,,
3D . (34¢)
(ii) —é—;—\,zRi=0, ie.,W'(R;)=W(R;)/R; .

This is precisely the confined-atom Thomas-Fermi model
[29] (in its linear-response version) revealed as a best-
bound problem in the Onsager sense. The solution is

V(r)= Ae*+Be “—4mn{Z)r/a?, (34d)
with 4 and B determined by the two boundary condi-

tions (34c). The Onsager-atom self-energy is given by
2upa,/Z;=Y'(0), to yield finally (in our units n =3 /41)

UoTF = UOTF/NkBT/F
=3 x;[(Z?/R))uy(aR;)

—3(Z)Z,2a*—aZ?/2] . (35)

Compared to (25b) it features the expected [3] linear-
response relation to the Yukawa potential energy. In the
Coulomb limit, @ =0, the divergent a2 term in uy(aR;)
cancels with the contributions of the uniform background
charge to yield the Lieb-Narnhofer [19] ‘“‘ion-sphere”
bound with u;=ugs,;=—0.9Z*/R;), and
R}=2Z,/{Z). Using the definition of Q(¢) in Egs. (6) the
electron density at the surface can be written as

pe(R;)=Z;Q(aR;)/(47wR}/3) . (36)

Optimization of the bound (35), subject to the total
charge neutrality condition, 3, x;R?=1, yields Egs. (10).
Comparison of (23) with (36) reveals its true physical
meaning: it is the condition of constant (independent of
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i) electron surface density, i.e., constant surface electro-
static potential [30]. This is of course the expected result
on physical grounds, and which is missing in the linear
rule. In view of the dominance of the electron contribu-
tion to the total pressure of the plasma, which is deter-
mined for Thomas-Fermi theory by their density at the
surface of the confined atom, the condition (23) also cor-
responds to the well-known ‘“‘volume-additivity rule” for
Thomas-Fermi mixing of elements [31],
v(P,T)= 3, x,v;(P,T), namely, combining specific
volumes at same pressure and temperature.

VI. CONCLUSION

The present nonlinear mixing rule is a physically
significant improvement over the widely used linear rule
[2,12-14]. It provides a simple scaling relation between
the thermodynamics of the mixtures and the pure phase,
and thus simplifies appreciably the representation of ther-
modynamic properties. The accuracy of this approxima-
tion must be eventually checked by simulations, but the
very favorable hypernetted-chain results provide at least
some indication for the general validity of the mixing
rule.

In addition, the present results can be utilized in other
approximate theoretical methods, e.g., the recently

discovered [26] instability of the diagrammatic iteration
process, which correlates well with the freezing density
for all classical monodisperse systems, and in particular
for the Yukawa potential. Thermodynamic calculations
based on the nonlinear mixing rule for the free energy,
combined with the instability calculations for Yukawa
mixtures, may eventually provide new tools for calculat-
ing the phase behavior of mixtures (freezing and phase
separation in the fluid) as a function of the softness of the
interaction. The renormalization property (as defined in
Sec. II) of the Yukawa potential is much stronger than its
semi-infinite slab [1] (i.e., R — o0 ) limit, and can be fruit-
fully applied for the analysis [32] of the analytical solu-
tions of the mean-spherical approximation [4,33] with
Yukawa closure, and in the general context of the Ewald
method [34]. Finally, the present results already proved
useful for analyzing electron-screening effects on the
screening potentials in strongly coupled plasmas [16], and
for developing mode free-energy functionals for inhomo-
geneous charged-particle fluids [35].
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